

Agenda

Graph Databases

SQL/PGQ

PostgreSQL and SQL/PGQ

Introduction to Graph Databases

Source: Wikimedia commons

Graph databases

Definition: A graph database uses graph structures with
nodes, edges, and properties to represent and store data.

Key Concepts:

● Nodes
○ Represent Entities
○ Examples: people, products, locations

● Edges
○ Connect nodes
○ Represent the Relationships between them
○ Examples: "knows," "purchased," "located_in"

● Properties
○ Attributes of nodes and edges
○ Examples: name, age, price

Optionally nodes and edges may be labelled for classification

Social Networks

Manage complex relationships within social networks, mine insights

Recommendation Systems

Analyze user preferences and item relationships to suggest relevant content.

Fraud Detection

Uncover hidden patterns and relationships in transaction data

Logistics and supply chain management

Map entire chain from suppliers to transportation routes efficiently

find bottlenecks, optimization opportunities

Graph database uses

Example usage: Fraudulent transaction detection

Suspicious transactions

Across multiple accounts

Across many banks

Across different types of instruments

Held by seemingly unrelated individuals

Movement of funds

MATCH
path=(a:Account)-[:TRANSACTION*3..6]->(b:Account)

RETURN path

Source: https://www.graphable.ai/blog/graph-database-fraud-detection/

SQL/PGQ: SQL for Property Graphs

PGQ (Property Graph Queries)

Purpose

Use SQL to treat relational database as a graph database

Extension to SQL

PGQ adds graph query capabilities to SQL

Standard

ISO/IEC 9075-16

Property Graph

Map relational tables to set of nodes or edges in a graph

Classify by labels

Expose columns as properties of nodes or edges

SQL/PGQ DDL constructs

PROPERTY GRAPH

VERTEX TABLES

KEY

LABELS

PROPERTIES

EDGE TABLES

SOURCE KEY

DESTINATION KEY

LABELS

PROPERTIES

SQL/PGQ query constructs

GRAPH_TABLE - specifies the property graph to use

MATCH - find paths within a graph with a given pattern

(a: label) - vertexes with a given label

[b: label] - edges with a given label

->, <- - vertex-edge connectors

WHERE

Within vertex/edge - filters edges or nodes based on properties

In a pattern: Filter patterns based on properties of elements in the path

COLUMNS

Project properties of nodes or edges in the paths

Property graph and relational data

Source: Wikimedia commons

Id Name Age
1 Alice 18
2 Bob 22

Id From To Since
100 1 2 2018/10/03
101 2 1 2018/10/04

Knows

Person

Id Name
1 Chess

Group

Id Member
ID

Group ID Since

102 1 1 2019/07/01
105 2 1 2019/02/14

MemberOf

SQL/PGQ property graph example: Vertex

PROPERTY GRAPH Gymkhana

VERTEX TABLES

Person

Label Person

Properties id, name, age

Group

Label SportsGroup

Properties group_id, name

SQL/PGQ property graph example: Edges

EDGE TABLES

Knows

Source: Person(id)

Destination: Person(id)

Label Relations

Properties id, since

Label Knows

Properties id, since, how

MemberOf

Source: Person(id)

Destination: Group(id)

Label Relations

Properties id, since

Label MemberOf

Properties id, type, since

SQL/PGQ query example

People who don’t know each other but are members of same group

(b:person)->(c:Group)<-(a:Person)

Introduce them

People who made acquaintances because of Gymkhana

(c:Group)<-[ma:MemberOf]-(a:Person)-[k:Knows]->(b:person)-[mb:MemberOf]->(c
)

WHERE (k.since > ma.since and k.since > mb.since)

Advertise them

ER diagram as a property graph

Relations mapped to a property graph
Person
(name,

Address, …)

Company
(name,

Address,
Business, …)

Trust
(name,

Address,
Type, …)

Bank Account
(Number,

Type,
Balance, …)

Credit Card
(Number,

credit limit,
expiry date, …)

Product
(number,
Name,

Cost, …)Order
(number,

Date,
Cost

payment, …)

Wishlist
(number,

Name, …)

Property graph labels

Payment
(type,
Limit,

expiry)

Customer
(name,

Address, …)

CustomerList
(type,

Name, …)

Product
(number,
Name,
cost,
…)

DDL

CREATE PROPERTY GRAPH shop

VERTEX TABLES (
 CreditCard label Payment,
 BankAccount label Payment,
 Person label Customer,
 Company label Customer,
 Trust label Customer,
 Wishlist label ProdLink,
 Order label ProdLink,
 Product)

EDGE TABLES (
 CCOwns label Owns
 BAHolds lable Owns,
 CustOrders label CustLink,
 CustWishlist label CustLink,
 CompanyOrders label CustLink,
 CompanyWishlist label CustLink,
 TrustOrders label CustLink,
 TrustWishlist label CustLink,
 OrderCCPayment label OrderPayment,
 OrderBAPayment label OrderPayment,
 OrderItems label ItemLink,
 WishlistItems label ItemLink);

Complex query made simple

Find all products paid by credit card

(o)->(py:Payment WHERE py.type = 'CC')<-()->(o:Order)->(p:Product) COLUMNS (p.name)

Break down

(o:Order)->(p:Product) - all products across orders

(o)->(py:Payment WHERE py.type = 'CC') - all orders paid by credit card

O - Links the two orders

(py:...)<-()->(o:Order) - links payments and orders by the customer/owner of payment method

COLUMNS (p.name) - projection

Advantages of relational database with SQL/PGQ

Integration: Leverage existing SQL infrastructure and expertise

Standardization: ISO standard ensures portability and interoperability.

Unified Data Management: Query both relational and graph data within a single system.

Performance: Optimized implementations of PGQ can improve performance compared to
pure SQL approaches for graph queries.

ACID guarantees

Query graphs already in relational form

Advantages of native graph databases

Flexibility: graph databases have flexible schema

Storage: graph databases have optimal storage

Performance: graph databases may have better performance

Graph databases and PostgreSQL

PostgreSQL and graph databases

Apache AGE

Cypher like graph query language

Wrapped in a function call

PostgreSQL is used as a storage

pgRouting

extends the PostGIS / PostgreSQL

provides geospatial routing functionality

Not for generic graphs

Native SQL/PGQ support: WIP

Most of the DDL: CREATE, ALTER, DROP property graph

All tools supported - dump/restore, upgrade, ecpg etc.

Basic query constructs

Basic path pattern specification: no quantifiers, embedded patterns yet

Label disjunction

Well integrated with rest of the SQL

Current status

Patch authored by Peter Eisentraut and me

Proposed on hackers,

Code complete

But it’s late for PG18, hopefully PG19

Reviews: functional, documentation, code - welcome

Testing: welcome

PostgreSQL extensibility

Storage optimized for graph databases

Pluggable storage method

Query rewrite rules

Custom plan nodes

Planner hooks

GQL support

Pluggable parser 😏
UDF - Apache AGE

Thank you

Types of graph databases (TBD - do we need this slide?)

(Start from here)

Property Graph Databases

Most common type

properties on nodes and edges (e.g., Neo4j, Amazon Neptune)

Language: Cypher

RDF (Resource Description Framework) Databases

Used for semantic web and linked data (e.g., Stardog, AllegroGraph)

SPARQL

